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ABSTRACT

A phenomenological lattice dynamics model has been developed that describes how strain
affects phonon frequencies and elastic constants in Group IV and III-V semiconductor thin films
and strained layers. Using this model, the phonon dispersion relations for strained-layer
heterostructures of Ge and GaAs on Si have been obtained in the quasiharmonic approximation.
This model uses available experimental data and can predict the effect of arbitrary strains on thin
films.

INTRODUCTION

The symmetry of a crystal can be altered by the presence of strains. This strain can also lift
phonon degeneracies, and induce upward or downward shifts of the frequencies that are linear in
strain to first order. The strains can be either induced by external stresses, or due to growth
conditions or modifications of the materials (built-in). Built-in strains in epilayers and
superlattices are produced by lattice mismatch or by the different thermal expansion coefficients
of the material layers involved. Considerable effort has been spent to understand the electronic
and phonon properties of strained-layer superlattices, which depend critically on the effects of
biaxial strain [1-3]. The folding of acoustic phonons and the confinement of optical phonons in
superlattices can give rise to many k = 0 zone center phonons that are IR and/or Raman active,
depending on the superperiodicity. The measurement of strain-modified phonon frequencies can
be used as a diagnostic tool to examine the structure of the thin film.

Cerdeira el al. introduced the microscopic p, q, and r parameters to account for the strain-
shift and splitting of the zone center phonon frequencies [4]. They evaluated these parameters by
using a Keating and valence force field model and assumed that the splitting between zone center
TO and LO modes in heteropolar semiconductors is independent of strain. Later, Anastassakis et
al. introduced effective charge deformation potentials to account for the different strain shift of
these modes [5]. Talwar and Vandevyver used an 11 parameter rigid ion model to study the
effects of pressure on the vibrational properties of Ga-In pnictides [2]. While their one phonon
and two phonon densities of states, Debye temperatures, Gruneisen constants, and linear thermal
expansion coefficients were all in reasonably good agreement with existing experimental data,
this model showed the flatness of the lowest TA branches at ambient pressure but not at elevated
pressures. This raised the question of whether the bending of the TA branch under compression
was an artifact of the rigid ion model or was due to the peculiarity of compound semiconductors.
Weinstein et al. suggested use of the bond charge model (BCM) to study the pressure
dependence of phonon dispersion relations [1]. Mayer and Wehner tried to extend the BCM to
account for the strain-dependent phonon properties of Si by including third order anharmonic
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potentials [6]. The mode Gruneisen parameters they obtained were not in good agreement with
available experimental values. They suggested that the problem was in the harmonic part of the
potentials and then modified the BCM by including shell interactions similar to those in the Shell
Model [7]. This new model with eight harmonic and five anharmonic parameters produced
reasonable agreement with experimental results. Sui and Herman used a modified
Keating/valence force field model with strain-dependent force constants to study stress dependent
phonon properties of Group IV semiconductors and strained-layers of these materials [3]. The
mode Gruneisen parameters they obtained were in good agreement with experimental data.

In this work, the effects of strain on the phonon dispersion of diamond and zincblende
cubic crystals are investigated by using a bond-charge model. Emphasis is placed on bulk Ge and
GaAs and their strained-epilayers and superlattices.

BOND-CHARGE MODEL AND THE QUASIHARMONIC APPROXIMATION

One important characteristic of the phonon dispersion of diamond and zincblende crystals is
that the TA branch phonons have very low frequency and the TA branches are very flat away
from the zone center. The Weber bond charge model is by far the most successful
phenomenological model in producing these features, and it uses fewer parameters than do other
models (six and four parameters for zinc-blende and diamond structure materials, respectively) [8,
9]. In this model, adiabatically moving bond charges (BC) are introduced on the bonds to mimic
the charge distribution of the crystal, allowing one to treat electron mediated ion-ion forces in a
simple way. Metal-like and covalent bonding are represented by short-range central forces
between ions and by interactions involving the BCs, respectively. For homopolar semiconductors
the BCs are in the middle of the bond, whereas for III-V semiconductors they are nearer to the
cations. The BCM interactions are: (a) nearest neighbor ion-ion central potential Oi4i, (b) nearest
neighbor central ion-BC potential OiDb, (c) Keating bond-bond interaction Vbb, and (d) Coulomb
interaction between ion-ion, BC-BC, and ion-BC.

In the quasiharmonic approximation, the changes in the force constants are obtained as
follows: the central ion-ion and ion-BC interactions are supposed to scale with the change in the
distance between the two "particles" (i.e., ions or BCs). The Keating bond-bending term scales
with the change in the angle between the particles. These interactions scale, respectively, as:

4 _i()= IDi(0)[1 + m,, -(1)

[ & A(cos(0,))1
r, cos(IV) J

cos(O.) = -1 / 3 is the equilibrium bond angle (no strain) between bonds i andj.
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Under an arbitrary strain, the bond lengths and angles change as:

Ar = F. Ai (3)

A0ej= • (ri Afij+ rj.- Aii,) (4)

2a

where Au is the static plus dynamic displacement:

A e= Er []aTeyZE,.,E +Au, (5)
a

e is the strain tensor, ri is the ith bond vector, 4 is the internal strain parameter, a is lattice constant
divided by four and T stands for transpose.

Hydrostatic Pressure

When the crystal is subjected to hydrostatic pressure, the strain is diagonal and is given by
eh = -P / 3B; P is the applied pressure and B is the bulk modulus. In the case of a strain
induced by a hydrostatic pressure, the symmetry of the crystal is not lowered and consequently
the bond angles do not change; bond lengths change by Ar = roe.. The force constants are
modified according to Equations 3 and 4. The Coulomb contribution to the force constants is

obtained by Ewald summation for the strained crystal.

The mode Gruneisen parameter is defined as: y, = -d In coa / d In V = -Aw0 / ( 3ehcZ),
where V is the volume of the crystal. y, at the F, X and L points of the Brilluion Zone [1] are
used to fit the strain parameters for the harmonic force constants m,-_ (interaction a), mibC

(interaction b), m, (interaction c) and m, (interaction d). For Ge, m, -m and m. are almost

equal to each other (m,_,=1 2 .5). mp is very small (=1.7), as is expected since the Keating
interaction is dependent on the bond angles and hydrostatic pressure preserves the angle between
the bonds.

For III-V materials this procedure is not easy to implement because of long-range
Coulombic interactions. It is assumed that each force constant has a similar functional
dependence on strain and that the positions of the bond charges are dependent on the strain. The
macroscopic electric field and the new equilibrium first potential derivatives were calculated and
mode Gruenisen parameters were fitted to the experimental values [1] at the F, L, X, and K
points.
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In Figure 1 the dispersion in GaAs and Ge mode Gruenisen parameters are plotted along the
IF-A-X-K-F-L directions. Also, contrary to the results of Ref 2, no substantial change in the
shape of the TA branches with pressure is found.
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Figure 1. The mode Gruneisen parameters for GaAs and Ge. Experimental data points are from
Ref 1.

Biaxial Strains

Biaxial Strain in the (001) plane

Uniaxial stress in the (001) direction can arise during pseudomorphic growth of a thin film
on a (001) substrate with a different lattice constant. The strain tensor can be decomposed into a
hydrostatic part Eh = 2 (1-C 12 /CI)E8/ 3 and a shear part e, =-(1+2C12 /C 1 )e./3, where
e= = (a, - af ) / af, and a3, af are lattice constants for the substrate and film respectively.
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The hydrostatic part affects only the bond length and the shear part affects only the bond
angles. Bond angle changes are given in Ref 3. In homopolar materials, zone center optical
phonon frequencies split into a singlet and a doublet. In heteropolar materials, the degeneracy of
the TO mode is lifted.

Biaxial Strain in the (111) Plane

When biaxial strain is in the (111) plane, in addition to the macroscopic strain, an internal
strain parameter ý is needed to uniquely define the relative position of the atoms; this gives the
relative displacements of the two face centered cubic lattices of the diamond structure.

The elements of the strain tensor are:

2C4
2C,4-C + 2C 2  (6)

E, (Cu + 2C,2 )(7
= 2C44 + C1 +2C,2E (7)

where Ed and co are the hydrostatic and shear components, and the C's are the second-order elastic
constants.

There are two different bond length and bond angle changes for this strain configuration, as
was seen in Ref. 3. The splittings at the F point are similar to those in the (001) case.

The frequency splitting for (001) strain at the F point is needed to determine the strain
coefficient of the P term in Equation 2, and the (111) splitting is used to check this value. In
Figure 2, phonon frequency shifts for Ge lattice matched to Si on (001) are plotted with these
strain-modified force constants.

SUMMARY

The bond charge model has been modified to study the strain dependence of phonon
frequencies of diamond and zinc-blende type semiconductors. Calculated mode Gruneisen
parameters are in good agreement with experimental values. For Ge, only two parameters are
needed in this calculation. Under hydrostatic pressure, bond charges move towards the center of
the bonds for the III-V materials, as is expected [9]. Details of this work, including application to
other Group III-V and to II-VI semiconductors and an investigation of the strain dependence of
the elastic constants will be published elsewhere.
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Figure 2. The phonon frequency shift Ac (cm-') along the growth direction for Ge

pseudomorphically grown on Si (100).
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